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of the elastic constants is larger for BaF2 than in the 
case of CaF2, indicating that anharmonicity effects 
are more pronounced in the case of BaF2. 

As can be seen, en and cu vary by about 10% over 
the temperature range 4.2-300°K, while cu hardly 
changes at all. A similar behavior is also observed for 
the alkali halides.12 The reason for this being that the 
variation of c44 with temperature is caused only by the 
thermal expansion of the lattice. On the other hand, in 
the case of c\\ and a* the shift in the vibrational fre­
quencies of the lattice with temperature also con­
tributes to the temperature dependence13 in addition 
to the contribution of the thermal expansion. 

From the values of the elastic constants extrapolated 
to 0°K, the Debye temperature at 0°K can be com-

12 G. Leibfried and H. Hahn, Z. Physik 150, 497 (1958). 
13 H. B. Huntington, in Solid State Physics, edited by F. Seitz 

and D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, 
p. 213. 

I. INTRODUCTION 

ACCORDING to Matthiessen's rule, the electrical 
resistance of a dilute alloy is separable into a 

temperature-dependent part, which is characteristic of 
the pure metal, and a residual part due to impurities.1 

The deviations that have been observed2""4 from this 
rule have not yet received a satisfactory explanation, 
for although a number of mechanisms that might cause 
such deviations have been suggested, none appears to 
give a numerical value that is sufficiently large. 

One of the first such calculations was due to Sond-
heimer,5 who took account of the fact that electron-
phonon scattering is inelastic. His solution of the 
Boltzmann transport equation showed a deviation 
from Matthiessen's rule too small to agree with experi-
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puted. Using the procedure of Marcus and Kennedy,14 

a value of 282°K for the Debye temperature at 0°K 
is determined. Since very-low-temperature specific-
heat data for BaF2 are not available, no direct com­
parison between the Debye temperatures determined 
from specific-heat and elastic data can be made. The 
Debye temperature determined from the lowest tem­
perature (13.79°K) specific-heat data available6 is 
169°K. The discrepancy may be due to a rapid rise 
of the Debye temperature in the range 14-0°K. 
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ment. The anisotropy of relaxation time of the conduc­
tion electrons in the noble metals has also been calcu­
lated,6 but was found too small to explain the observed 
results. 

An interesting suggestion was made by Koshino,7 

who proposed that the scattering of electrons by the 
thermal motion of the impurities could lead to a signifi­
cant additional resistance. His result was later criticized 
on the grounds that in an expansion of the lattice dis­
placements, he had omitted a set of terms which give a 
contribution almost exactly cancelling the rest of the 
series. A rigorous demonstration was given8 that when 
the change in electron energy is neglected, the scattering 
of a single free electron by an impurity atom is quite 
independent of its thermal motion. No attempt was 
made to solve the Boltzmann equation using this re­
vised expression for the scattering, and only an intuitive 
argument was given that the presence of other electrons 

6 P. L. Taylor, Proc. Roy. Soc. (London) A275, 209 (1963). 
7 S. Koshino, Progr. Theoret. Phys. (Kyoto) 24, 484 and 1049 

(1960). 
8 P. L. Taylor, Proc. Phys. Soc. (London) 80, 755 (1962). 
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A small proportion of the events in which a conduction electron is scattered by an impurity atom involve 
the emission or absorption of a phonon. An investigation is made of the suggestion that such incoherent 
electron-phonon interactions may lead to appreciable deviations from Matthiessen's rule. The effect of such 
processes on the electrical resistivity is found to be too small to be observable. 
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FIG. 1. Inelastic scat­
tering processes. 

would not modify the scattering enough to cause any 
appreciable change in resistance. However, the recent 
appearance in the literature of some articles9-11 that 
question this view indicates that a more careful deriva­
tion of this result is necessary. 

To this end we shall derive an explicit expression for 
the scattering probability, avoiding the transformed 
correlation functions of the earlier paper,8 and then show 
that the solution of the Boltzmann equation leads only 
to a negligible change in the resistivity. 

II. THE SCATTERING PROBABILITY 

We consider the scattering of a free electron between 
states having wave numbers k and k' by a potential 
situated at X. The dependence of the scattering matrix 
for this process on the position of the scatterer is given8 

by 
r(k,k/,X) = exp(fK.X)r(k,k/), 

where K is k'—k, and jT(k,k') is the scattering matrix 
when the potential is at the origin. The probability of 
a scattering process occurring in which the lattice con­
taining the impurity atom at X changes its state from 
| Xi) to | Xf) is then given by 

Q(k,k') = (2*r/*)l <X;|T(k,k') exp(fK.X)|X/>|2 
X6(Sv-6k+Sif). 

Here §& is the energy of the electron and Si/ the change 
in energy of the lattice. Because T(k,k') does not con­
tain the lattice coordinates it may be removed from the 
brackets. We next expand the exponential in powers of 
X. This is justifiable since the component of K-X due 
to any one crystal mode is always small. If we assume 
the impurity to have an atomic mass M close to that of 
the solvent, we may write X as a sum of creation and 
annihilation operators12 for the phonon modes q. There 
will be two kinds of term in the expansion—those that 
change the lattice state and those that do not. These are 
represented symbolically in Figs. 1 and 2, respectively. 
We shall consider only first-order processes in inelastic 
scattering [Fig. 1(a)] and zeroth- and second-order 
processes in elastic scattering [Figs. 2(a) and 2(b)]. We 
then find that 

G(k,kO=(2T/*)|r(klkO|»{Ci-Efl^
f(2n.+i)] 

9 S. Koshino, Progr. Theoret. Phys. (Kyoto) 30, 415 (1963). 
10 P. G. Klemens, J. Phys. Soc. Japan 18, Suppl. II, 77 (1963). 
11 D. H. Damon, Bull. Am. Phys. Soc. 9, 96 (1964). 
12 C. Kittel, Quantum Theory of Solids (John Wiley & Sons Inc., 

New York, 1963), Chap. II. 

Here nq is the average number of phonons of energy 
fuaq present in the crystal, nq is nq+l or nq correspond­
ing to the ± sign, and 

where V is the crystal volume. For simplicity we have 
assumed the phonon spectrum to be isotropic, and have 
summed over polarization directions. 

Finally, we must take account of the fact that transi­
tions can only occur from occupied to unoccupied elec­
tron states. We write 

p(k,ko=/*(w*oeaMo, 
where /& is the probability that the state k is occupied. 
This will tend to inhibit the inelastic scattering at low 
temperatures. At the absolute zero all that remains of 
the term in braces is 

(i-Z*D**)KS*-sk), 

which represents the reduction of the simple scattering 
by the zero-point motion of the impurity. One recog­
nizes in this the first two terms of the expansion of 1 — 70, 
the zero-temperature Debye-Waller factor for the 
crystal. 

III. SOLUTION OF THE BOLTZMANN EQUATION 

The conductivity tensor, cr, is given13 by 

v= -e2 £_* \k^k{dfh/d8k), 

where v̂  is the electron velocity and Ak is the vector 
mean free path, which is found from the Boltzmann 
transport equation 

v*/*(l-/*) = £*' P(k,kO(A*-A*0. 

If we assume the first term, P(0) (k,k'), in the expression 
for P(k,k'), representing elastic scattering, to be much 
greater than all the subsequent terms, we may expand 
the mean free path and derive an expression for the 
change in conductivity. Writing 

p=p(o)+P(q) ? A = A<°>+A<*>, 

we have, to first order, 

v*/jb(l-/fc) = E*'P(0)(k,k,)(Afcco)-Afc^o)); 

£,,p(°>(k,k')(A fc(*>-A^)) 
= -E*'P(fl)(k>k,)(A4®)-Afc,Co)). 

We assume r(k,k') to be a smoothly varying function, 

FIG. 2. Elastic scat­
tering processes. 

(a) 
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so that when the summation over k' is split into a sum­
mation over surfaces of constant energy, 71(k,k/) may 
be taken to be independent of the energy of the state k'. 
This is a good approximation because the scattering 
probability is only appreciable within the thickness of 
the Fermi surface, owing to the presence of the factor 
fk (1 —/&')• We now make the substitutions 

i?=(«*-r ) /*r ; /*=(*<+1)-1 

p — ftCOq/kT] = ( * - ! ) -

according to the rules of Fermi and Bose statistics. Here 
f is the chemical potential and kT the Boltzmann energy. 
We can now also replace K2 by its average value, Kav

2. 
After some manipulations one finds that cr is given in 
terms of <r(0), the conductivity calculated for a stationary 
scatterer, by 

r(0) (l+ES*8[(2»f l+l)- f dJ dSk 

XfkO.-fh>)%Qt(8k'-Sk±Ju*d ]} 
We have made use of the fact that 

F Mi-fk)dv=i. 

Since the summand depends only on the phonon energy, 
the summation over q may be replaced by integration 
over the density of phonon states, g(co). A little more 
algebra reveals that 

where 

«= h 

ff=ffW)(l+a), 

JO Li 

sinhp 
- \do). 

coshp+cosh^J 

The integral over co nay be interpreted as giving the 
variation of relaxation time as a function of the elec­
tron energy rj. 

We may examine the form of this expression in the 
limits of high and low temperatures. Remembering that 
ha) = pkT we see that a vanishes in the limit of large T, 
since the density of states has fallen to zero long before 
the term in brackets has become appreciable. 

At zero temperature the term in brackets tends to 
unity giving, as we expect, 

a= J DJg{u)do>^ 
'o 

:7o, 

where 1—70 is the Debye-Waller factor for zero tem­
perature. The correction term involves only phonons of 

small wave number, and so we make the Debye ap­
proximation, in terms of which 

© being the Debye temperature and k Boltzmann's 
constant. Upon substitution and integration over rj 
and p we find 

T(0) [ 1 - 2 7 0 + Y C T ) ] , 
where 

7(7> 1+—' 
4 Mk®L 3 GJ + • 

We note that no assumptions about the isotropy of the 
electron system have been made in deriving this result. 

IV. CONCLUSIONS 

The form that we have derived for the variation with 
temperature of the impurity resistance is shown sche­
matically in Fig. 3. The total resistance is composed of 

FIG. 3. The tempera­
ture variation of impur­
ity resistance. The total 
resistance (a) is com­
posed of a part due to 
elastic scattering (b) and 
a part due to inelastic 
scattering (c). 

two parts, one due to elastic scattering processes, the 
other to inelastic ones. At the zero of temperature the 
resistance is entirely due to elastic scattering, and is 
smaller by an amount 70 than the resistance that would 
be found if the impurity atom were infinitely massive. 
The factor 70 is typically of the order of 10~2. 

As the temperature is raised the amount of inelastic 
scattering increases, while the amount of elastic scat­
tering decreases. However, as this happens the ordinary 
lattice resistance, which varies as T5, starts to become 
appreciable. Let us consider a highly impure specimen 
for which the lattice resistance at room temperature, 
Pe, is equal to the residual resistance, po. Then at low 
temperatures the total resistance is composed of three 
parts, 

/T\2 /T\5 

p« 10~2f - . J p0+500f - • J pe+po, 

the first term arising from incoherent scattering and the 
second from coherent scattering, according to the usual 
Bloch-Gnineisen theory. We see from this expression 
that the T2 term would be hidden by the lattice resist­
ance except at temperatures below 0/40. This repre­
sents a resistance change of less than 10-5po, and would 
not generally be observable. 


